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We show that photons in two tunnel-coupled microwave resonators each containing a single superconducting
qubit undergo a sharp nonequilibrium delocalization-localization �self-trapping� transition due to strong
photon-qubit coupling. We find that self-trapping of photons in one of the resonators �spatial localization�
forces the qubit in the opposite resonator to remain in its initial state �energetic localization�. This allows for
an easy experimental observation of the transition by local readout of the qubit state. Dissipation of photons
and decoherence of the qubit favor the self-trapped regime.

DOI: 10.1103/PhysRevB.82.100507 PACS number�s�: 42.50.Pq, 42.50.Ct, 42.50.Nn

In circuit quantum electrodynamics �QED�, superconduct-
ing qubits are coupled with microwave photons in a trans-
mission line resonator reaching extremely strong light-matter
interactions within an integrated circuit.1 Device integration,
high tunability, and individual addressability of each resona-
tor make wide parameter regimes easily accessible. Circuit
QED thus constitutes one of the most promising solid-state
architectures for quantum information processing and offers
the possibility to study fundamental questions of interacting
quantum systems.2 The experimental focus has been on the
design of the coupling between a single cavity and a single
qubit and subsequent work demonstrated a great level of
control of single-cavity systems.3–7 Today, a key challenge
for scalability and further progress in the field is the under-
standing of small coupled systems, i.e., effective qubit-qubit
and photon-photon interactions and their interplay with
dissipation.8–10

Recent theoretical interest in hybrid light-matter systems
has been on the superfluid-Mott insulator transition of polari-
tons in a coupled-cavity array.11–18 Although the theoretical
investigation of this quantum phase transition has triggered
enormous interest, the experimental realization of a large ar-
ray of identical cavities is very ambitious. In this Rapid
Communication we show that even in the smallest possible
coupled-cavity system of a Jaynes-Cummings dimer �JCD�,
one can find strong signatures of the on-site repulsive inter-
action among photons. The two-coupled cavity system pro-
posed here is simple enough to be readily realizable with
state-of-the-art circuit QED technology.

We study a photon Josephson junction �PJJ� consisting of
two tunnel-coupled microwave resonators each containing a
single superconducting qubit �Fig. 1�. We show that photons
undergo a sharp nonequilibrium delocalization-localization
transition from a regime where an initial photon population
imbalance between the two resonators undergoes coherent
oscillations �delocalized� between the two resonators to an-
other regime where it becomes self-trapped �localized� as the
photon-qubit interaction is increased. Similar self-trapping
transitions were found in optical fibres,19 molecules,20 cold
atom,21–23 and polariton Bose-Einstein condensates
�BECs�.24 In all of these systems self-trapping is due to a

Kerr/Bose-Hubbard-type nonlinearity and has been experi-
mentally observed in the semiclassical regime with a large
number of particles. The circuit QED implementation pro-
posed in this Rapid Communication has several advantages
with respect to these systems: �i� self-trapping is due to a JC
rather than a Kerr/Bose-Hubbard-type nonlinearity. The JC
interaction accurately describes the photon-qubit coupling in
a microwave resonator.25 In contrast, a Kerr/Bose-Hubbard-
type nonlinearity is often a rather crude approximation of the
experimental conditions.26,27 �ii� The PJJ is a genuinely dis-
sipative system. We show that dissipation and spontaneous
emission of the qubit favor the localized regime. �iii� The PJJ
may operate in the semiclassical �many photons� as well as
quantum �few photons� limit since each resonator can ini-
tially be pumped with an almost arbitrary number of pho-
tons.

In the following, we study in detail the classical versus
quantum nature of this transition and present numerical as
well as analytical results including the effects of dissipation
and decoherence. At the end of the Rapid Communication,
we outline a precise proposal on how to measure the local-
ization transition of photons experimentally.

We describe the PJJ �Fig. 1� by a two-site Jaynes-
Cummings-Hubbard Hamiltonian �JCHM� or JCD
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FIG. 1. �Color online� Schematic of the PJJ proposed in this
Rapid Communication. Two transmission line microwave resona-
tors �L,R� are coupled in series with a tunneling rate J, determined
by the series capacitance of the resonators. Each resonator is
strongly coupled to a superconducting qubit with a coupling rate g,
providing a strong JC nonlinearity. Photons can leave each resona-
tor at a rate �, providing a mechanism for dissipation. Decoherence
of the qubit is taken into account via the spontaneous emission rate
�.
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H = �
i=L,R

hi
JC − J�aL

†aR + H.c.� , �1�

where hi
JC denotes the local JC Hamiltonian hi

JC=�cai
†ai

+�x�i
+�i

−+g��i
+ai+�i

−ai
†� for the left �L� or the right �R� cav-

ity, ai �ai
†� and �i

+ ��i
−� are the photon creation �annihilation�

and qubit raising �lowering� operators, respectively. The pho-
ton mode frequency is �c, the qubit transition energy is �x,
and the photon-qubit coupling is given by g �we set �=1�.
The photon-qubit interaction induces an anharmonicity in the
spectrum of the JC Hamiltonian which leads to an effective
on-site repulsion �antibunching� for photons. Throughout the
Rapid Communication we will assume zero detuning ��x
=�c� for which this anharmonicity is strongest. Recently,
dynamical aspects in a finite-size JCHM have been investi-
gated but restricted to the one excitation �either photon or
qubit� subspace �i.e., photon-photon interaction effects are
irrelevant� and neglecting dissipation.28–30

In the JCD discussed here, photon dissipation and qubit
decay are both taken into account by a Lindblad master
equation for the system’s density matrix �

��

�t
= i��,H� + �

i=L,R
��L�ai� + �L��i

−�� , �2�

where the Liouvillian of an operator O is defined as
L�O�= �2O�O†−O†O�−�O†O� /2. Here, � and � denote
cavity decay and spontaneous photon emission rate by the
qubit, respectively, and we neglected pure qubit dephasing as
it can be experimentally suppressed with respect to the other

two decay channels, e.g. in a transmon qubit.31 Both decay
processes in Eq. �2� lead to a decrease in the total number of
photons as a function of time.

The central quantity of interest is the photon population
imbalance z�t�= �nL�t�−nR�t�� /N�t� with ni=Tr âi

†âi�̂ and the
total photon number N=nL+nR. Throughout the Rapid Com-
munication, we consider the experimentally most relevant
initial condition where the left cavity is pumped with N pho-
tons, the right cavity is empty and both qubits reside in their
respective ground state at t=0. For large photon numbers, we
can resort to a semiclassical approximation in which corre-
lation functions in Eq. �2� are decoupled by simple factoriza-
tion, e.g., �a†�−���a†���−�, yielding eight coupled equations
of motion for the expectation values of the photon and qubit
operators which can be solved for an arbitrary number of
photons.32 In the following, we present results of the semi-
classical approximation �Fig. 2� as well as the full quantum
solution of Eq. �2� �Fig. 3�.

We first discuss results of the semiclassical approximation
without dissipation ��=�=0�. In this case one can further
reduce the number of coupled equations using energy con-
servation and the specific initial condition chosen above,
yielding only four equations of motions,

�̇L = − 2g Re��L� ,

�̇R = − 2g Im��R� ,

Re��̇L� = g sin��L�/2 − J Im��R� ,

Im��̇R� = g sin��R�/2 + J Re��L� , �3�
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FIG. 2. Photon imbalance z�t� and inversion of the qubits
�z�L,R��t� obtained from a semiclassical approximation for the dis-
sipative JCD with �=�=0.05J. Shown are results in the Josephson
regime with g=0.4gc �left� and in the self-trapped regime with
g=2gc �right�. The vertical dashed line points to a situation where
all photons have tunneled from the left to the right cavity and thus
Rabi oscillations of the left qubit have slowed down while the right
qubit oscillates rapidly. The inset in the right panel shows the in-
version of the right qubit at short times in the self-trapped regime
displaying strongly suppressed Rabi oscillations. Here, we have
chosen the initial condition �L�0�=	20 corresponding to a coherent
initial state with average photon number N=20.
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FIG. 3. �Color online� Photon imbalance z�t� obtained from a
full numerical solution of the master Eq. �2� �including quantum
fluctuations� with �=�=0 �black thin curves� and �=�=0.05J �red
thick curves� for initially N�0�=20 photons �and qubits initially in
their ground state �z�L,R��0�=−1 /2�. Figures �a�–�f� show results for
g=0.1gc ,0.4gc ,0.6gc ,0.8gc ,0.9gc ,2gc. The inset shows the time-
averaged imbalance �z� �averaged over the time interval
t� �0,100 /J�� for �=�=0 �dashed line� as a function of the
photon-qubit coupling g normalized with the semiclassical critical
value gc in Eq. �4�. In comparison, the semiclassical transition at
this scale is essentially abrupt �dotted line�.
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where ��L,R�= �a�L,R��, Im��L�=Re��R�=0, and the angles �i
describe the qubit states ��� L�=−�sin �L ,0 ,cos �L� /2 and
��� R�=−�0,sin �R,cos �R� /2. At zero interaction �g=0� Eq.
�3� is exactly solvable. In this limit the photon imbalance
undergoes coherent harmonic oscillations z�t�=cos �Jt with
frequency �J=2J. As g becomes nonzero this frequency de-
creases and the oscillations become anharmonic. At a critical
value of the coupling constant

gc � 2.8	NJ �4�

the period of oscillation diverges �critical slowing down� and
an abrupt transition occurs to a localized regime, where the
initial photon imbalance stays almost completely in the left
cavity, i.e., z�t��1. Solutions of Eq. �3� near the transition
�g
gc� are shown in Fig. 2. An important and useful result
is that the localization transition of photons can be observed
in the population inversion of the two qubits, which depend
on the number of photons in each cavity. In the delocalized
regime �g	gc, see Fig. 2 left�, when photons are tunneling,
e.g., from the left into the right cavity, Rabi oscillations of
the left qubit slow down considerably while those of the
right qubit speed up. After half a tunneling period the sce-
nario is reversed. On the other hand, in the localized regime
�g
gc, see Fig. 2 right� the left qubit displays fast, complete
Rabi oscillations while the right one displays slow, small
amplitude oscillations �right column in Fig. 2�. In other
words, spatial localization of photons in the left resonator
induces an energy state localization of the right qubit �notice
that deep in the localized regime �g�gc� the right qubit re-
mains very close to the ground state at all times, i.e.,
�z�L,R��t���z�L,R��0��. This suggests that the localization
transition of photons in a PJJ can be observed experimentally
by a local readout of the qubit states. It also shows that
qubit-qubit correlations are largely suppressed in the local-
ized regime.

Taking into account dissipation and spontaneous emission
within the semiclassical approximation �i.e., solving all eight
coupled equations of motion� leads to mainly three effects:
�i� the oscillations of the qubit inversion are damped due to
spontaneous emission. �ii� The frequency of these oscilla-
tions slows down with time as photons are leaving the cavity.
�iii� Dissipation and spontaneous emission make the interac-
tion terms of the Hamiltonian effectively time dependent. If
the parameters of the system are properly chosen this can
lead to a transition from a delocalized to a localized phase at
finite times. Thus, dissipation and spontaneous emission, sta-
bilize the localized regime, i.e., we find self-trapped solu-
tions for significantly smaller values of the photon-qubit cou-
pling g	gc. In Fig. 2 we have chosen the coupling strengths
such that we always stay within one phase; a careful analysis
of this switching behavior will be given elsewhere.

Full numerical solutions �including quantum fluctuations�
of the master Eq. �2� using a Fock state basis for 20 photons
are shown in Fig. 3. Most importantly, we observe that the
localization transition survives. However, specific quantum
correction shows up: �i� deep inside the delocalized regime
�see Fig. 3�a�� the photon imbalance displays beatings of the
coherent oscillations, a quantum feature that is absent in
semiclassical solutions. Dissipation and spontaneous emis-

sion strongly damp the large amplitude oscillations and sup-
press these beats; �ii� the localization transition is shifted to
smaller g values and smoothened �see inset of Fig. 3�; �iii� in
the localized regime with dissipation and spontaneous emis-
sion �see Figs. 3�e� and 3�f�� the imbalance approaches zero
asymptotically at long times displaying no single-particle
Rabi oscillations �i.e., when all photons left both cavities�.
�iv� The deeply localized regime displays rich multiscale
time dynamics, which can be explained using the effective
level scheme shown in Fig. 4�c�. For short times, Rabi
oscillations of the qubit induce small amplitude oscillations
�on the order of 
1 /N� of the rescaled photon imbalance
z̄�t�= �n1�t�−n2�t�� /N�0�, see Fig. 4�a�. The frequency of the
Rabi oscillations �due to exchange of one photon between
local qubit and cavity� is given by the large splitting between
lower and upper polariton states which yields for J=0 and
large photon numbers �R=2g	N+O�1 /N�. For ultralong
times the localization of photons is unstable and almost com-
plete oscillations of the imbalance set in, see Fig. 4�b�. Ne-
glecting the perturbative corrections to the eigenvectors of
Hamiltonian �1�, we find for the rescaled imbalance
z̄=cos��t��1− �1 /N�sin2��Rt��+O�J2 /g2� which quantita-
tively reproduces the numerical results in Figs. 4�a� and 4�b�
�gray curve�. The period of ultralong tunneling is set by the
splitting �, which we have calculated in leading order from
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FIG. 4. �Color online� Rescaled photon imbalance
z̃�t�= �n1�t�−n2�t�� /N�0� deep in the self-trapped regime for
N�0�=5 photons with g=3gc and �=�=0. Shown are small ampli-
tude Rabi oscillations on short-time scales �Fig. 4�a�� and large
amplitude ultralong tunneling �Fig. 4�b��. Results of a full numeri-
cal solution of the quantum master Eq. �2� �gray curve in Figs. 4�a�
and 4�b�� are compared with strong-coupling degenerate perturba-
tion theory �black curve� based on the effective level scheme shown
in Fig. 4�c�. Note that a polariton eigenstate �M�� is a mixed photon
�M ,M −1�-qubit �g ,e� state, i.e, �M��= ��M ,g�+���M −1� ,e�� /	2
�the zero polariton state is a special case with �0���0−�= �0,g��. In
Fig. 4�c�, �M� ,K
�= 
�M��L�K
�R, �K
�L�M��R� denotes the pair
of degenerate polariton eigenstates of Hamiltonian �1� at J=0 with
�M ,K� lower/upper �� ,
=�� polaritons in L and R cavity, respec-
tively. Their degeneracy is lifted due to tunneling J, which induces
the splitting � leading to ultralong tunneling with period T=2� /�
�see inset in Fig. 4�b��.
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Nth-order degenerate strong-coupling perturbation theory,
yielding �=cNJ�J /g�N−1 with a constant cN that depends on
the number of photons N. The inset in Fig. 4�b� shows the
scaling of the corresponding time period T=2� /� of the
large amplitude oscillations as a function of N. The period T
increases very fast �quasiexponentially� with increasing pho-
ton number �see inset in Fig. 4�b��. Thus, true localization
disappears in a small system but turns exponentially “good”
with increasing system size �photon number�. Already for
five photons the ultralong tunneling regime is hardly acces-
sible experimentally. Ultralong tunneling times were also
predicted for the Bose-Hubbard-model �BHM� .33 We should
note, however, that under experimental conditions any asym-
metry between the two cavities �e.g., due to small differences
in detunings or coupling constants� will lift this degeneracy
and set the effective time period of the large amplitude os-
cillations. A corollary of this statement is that as long as such
an asymmetry is much smaller than the frequency �J=2J the
localization transition should be observable.

The physics of a PJJ should be readily observable using a
circuit QED implementation with realistic device parameters.
A possible device consists of two series-coupled transmis-
sion line resonantors, each containing a single superconduct-
ing qubit �Fig. 1�. A broad parameter space is available
through changes in lithographic patterning. In particular,
qubit-cavity coupling g can range from 1 to 300 MHz while
the cavity-cavity coupling J and the cavity dissipation rate �
can be tuned independently in a range 50 kHz to 50 MHz.
The spontaneous emission rate � is typically 50–500 kHz.
An experimental observation of the localization transition
proceeds in three parts. One cavity is populated with photons
�initialization�, the evolution proceeds for a fixed duration of
time �evolution�, and the photon occupancy of each cavity is
finally measured �readout�. This entire process would be re-

peated for varying evolution times, thus allowing full recon-
struction of the population imbalance z�t�. Initialization can
be accomplished using three different methods: �i� in the
simplest method, the cavity is populated with a coherent
photon state while the qubit is far off resonance ��x��c�;
the qubit is then quickly brought into resonance ��x=�c� for
the evolution.4,5 This scenario is best described by the results
of the semiclassical approximation in Fig. 2. �ii� The cavity-
qubit system can also be populated directly with a few-
polariton state, i.e., an eigenstate of the JC Hamiltonian, us-
ing a properly timed � pulse.6 �iii� Finally, a N-photon Fock
state can be constructed sequentially by successively exciting
the qubit very quickly and bringing it into resonance
��x=�c�. The multiphoton/polariton transitions in the latter
two scenarios are resolvable up to 5–10 excitations and are
faithfully realized by the initial conditions chosen in Fig. 3
�full quantum calculation�. After evolution for a given time,
the qubits coupled to each cavity will be used to measure the
photon occupation of that cavity. When strongly coupled, the
qubit frequency is shifted depending on the number of pho-
tons in the cavity;3 by interrogating these different frequen-
cies, a quantum nondemolition experiment of the photon
number can be performed.7

In this work we have shown that two tunnel-coupled mi-
crowave resonators each containing a Jaynes-Cummings-
type nonlinearity undergo simultaneously sharp localization
transitions of photons �spatial� and qubits �energetic�. Our
results suggest many directions of further theoretical inves-
tigations including effects of detuning, quantum-classical
crossover, and interplay of localization and entanglement.
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